Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Decreases in body sizes of animals related to recent climate warming can affect population persistence and stability. However, direct observations of average sizes over time and their interrelationships with underlying density-dependent and density-independent processes remain poorly understood owing to the lack of appropriate long-term datasets. We measured body size of two species common to headwater streams in coastal and Cascades ecoregions of the Pacific Northwest of North America over multiple decades, comparing old-growth and managed forests. We found consistent decreases in median length of Coastal Cutthroat TroutOncorhynchus clarkii clarkii,but a coexisting species, the Coastal Giant SalamanderDicamptodon tenebrosus, appears to be more resilient to size changes over time. Based on observed trends, adult trout have decreased in length by 6–13% over the last 30 years. Length decreased more in larger compared to smaller animals, suggesting that these effects reflect changes in growth trajectories. Results from a model-selection approach that included hydroclimatic and biological information as covariates in one of our study ecoregions demonstrated that stream temperature alone did not explain observed length reductions. Rather, a combination of density-dependent (animal abundances) and local density-independent factors (temperature, habitat, and streamflow) explained observed patterns of size. Continued decreases in size could lead to trophic cascades, biodiversity loss, or in extreme cases, species extirpation. However, the intricate links between density-independent and density-dependent factors in controlling population-level processes in streams need further attention.more » « less
-
We quantified temporal dynamics of wood storage, input, and transport over a 24‐year period in adjacent old‐growth and second‐growth forested reaches in Mack Creek, a third‐order stream in the Cascade Range of Oregon. The standing stocks of large wood in the old‐growth reach exceeded those at the second‐growth reach by more than double the number of wood pieces and triple the wood volume. Annual inputs of large wood were highly variable. Wood numbers delivered into the old‐growth reach were 3× higher and wood volume 10× greater than in the second‐growth reach. The movement of number and volume of logs did not differ significantly between the two reaches over time. Less than 2% of the logs moved in most years, and the highest proportion moved in the year of the 1996 flood (9% in old growth and 22% in second growth). Most of the large wood aggregated as jams in both reaches. The second‐growth reach lacked major jams, but 29% of the logs in the old growth were in full‐channel spanning jams. Long‐term observations of annual storage, input, and movement reveal the temporal dynamics of wood rather than static representations of the characteristics of wood. Input events and transport of wood in Mack Creek were episodic and varied greatly over the 24‐year study, which illustrates one of the major challenges and opportunities for understanding the cumulative dynamics of wood in streams.more » « less
-
Abstract Predicting the edges of species distributions is fundamental for species conservation, ecosystem services, and management decisions. In North America, the location of the upstream limit of fish in forested streams receives special attention, because fish-bearing portions of streams have more protections during forest management activities than fishless portions. We present a novel model development and evaluation framework, wherein we compare 26 models to predict upper distribution limits of trout in streams. The models used machine learning, logistic regression, and a sophisticated nested spatial cross-validation routine to evaluate predictive performance while accounting for spatial autocorrelation. The model resulting in the best predictive performance, termed UPstream Regional LiDAR Model for Extent of Trout (UPRLIMET), is a two-stage model that uses a logistic regression algorithm calibrated to observations of Coastal Cutthroat Trout ( Oncorhynchus clarkii clarkii ) occurrence and variables representing hydro-topographic characteristics of the landscape. We predict trout presence along reaches throughout a stream network, and include a stopping rule to identify a discrete upper limit point above which all stream reaches are classified as fishless. Although there is no simple explanation for the upper distribution limit identified in UPRLIMET, four factors, including upstream channel length above the point of uppermost fish, drainage area, slope, and elevation, had highest importance. Across our study region of western Oregon, we found that more of the fish-bearing network is on private lands than on state, US Bureau of Land Mangement (BLM), or USDA Forest Service (USFS) lands, highlighting the importance of using spatially consistent maps across a region and working across land ownerships. Our research underscores the value of using occurrence data to develop simple, but powerful, prediction tools to capture complex ecological processes that contribute to distribution limits of species.more » « less
-
The use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present. Multispecies eDNA approaches may also be more challenging where freshwater mussel populations are most diverse due to ongoing and significant taxonomic restructuring that has been further complicated by molecular phylogenies using mitochondrial genes. For this study, we developed a microfluidic metabarcoding array that targets a wide range of species, from invertebrates to fishes, with an emphasis on detecting unionid mussels known to be present in the Sipsey River, Alabama. We compared mussel species diversity across six sites with well-studied mussel assemblages using eDNA surveys and traditional quadrat surveys in 2016. We examined how factors such as mussel population density, biomass and location in the river substrate impacted our ability to detect certain species; and investigated unexpected eDNA detections through phylogenetic analysis. Our eDNA results for fish and mussel species were broadly consistent with the data from traditional electrofishing and quadrat-based field surveys, although both community eDNA and conventional sampling detected species unique to that method. Our phylogenetic analysis agreed with other studies that treat Pleurobema decisum and P. chattanoogaense as synonymous species; however, they are still listed as unique species in molecular databases which complicates their identity in a metabarcoding assay. We also found that Fusconaia flava and F. cerina are indistinguishable from one another using a portion of the NADH dehydrogenase Subunit 1 (ND1) marker, which may warrant further investigation into whether or not they are synonymous. Our results show that many factors impacted our ability to detect and correctly identify Unionidae mussel species. Here we describe the obstacles we faced, including the murky phylogeny of Unionidae mussels and turbid river conditions, and our development of a potentially impactful freshwater mussel monitoring eDNA assay.more » « less
-
Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems.more » « less
-
Abstract Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single “meta‐ecosystem.” Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream–riparian meta‐ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as “allochthony.” These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.more » « less
An official website of the United States government
